Равномерное движение тела по окружности. Равномерное движение по окружности

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • При описании движения точки по окружности мы будем характеризовать перемещение точки углом Δφ , который описывает радиус-вектор точки за время Δt . Угловое перемещение за бесконечно малый промежуток времени dt обозначается .

    Угловое перемещение – величина векторная. Определяется направление вектора (или ) по правилу буравчика: если вращать буравчик (винт с правосторонней резьбой) в направлении движения точки, то буравчик будет двигаться в направлении вектора углового смещения. На рис. 14 точка М движется по часовой стрелке, если смотреть на плоскость движения снизу. Если крутить буравчик в этом направлении, то вектор будет направлен вверх.

    Таким образом, направление вектора углового перемещения определяется выбором положительного направления вращения. Положительное направление вращения определяется правилом буравчика с правосторонней резьбой. Однако с таким же успехом можно было взять буравчик с левосторонней резьбой. В этом случае направление вектора углового смещения было бы противоположным.

    При рассмотрении таких величин, как скорость, ускорение, вектор смещения не возникал вопрос о выборе их направления: оно определялось естественным образом из природы самих величин. Такие вектора называются полярными. Вектора, подобные вектору углового перемещения, называются аксиальными, или псевдовекторами . Направление аксиального вектора определяется выбором положительного направления вращения. Кроме того, аксиальный вектор не имеет точки приложения. Полярные векторы , которые мы рассматривали до сих пор, приложены к движущейся точке. Для аксиального вектора можно лишь указать направление (ось, axis – лат.), вдоль которой он направлен. Ось, вдоль которой направлен вектор углового смещения, перпендикулярна плоскости вращения. Обычно вектор углового перемещения изображают на оси, проходящей через центр окружности (рис. 14), хотя его можно нарисовать в любом месте, в том числе на оси, проходящей через рассматриваемую точку.

    В системе СИ углы измеряются в радианах. Радиан – это такой угол, длина дуги которого равна радиусу окружности. Таким образом, полный угол (360 0) равен 2π радиан.

    Движение точки по окружности

    Угловая скорость – векторная величина, численно равная углу поворота за единицу времени. Обозначается обычно угловая скорость греческой буквой ω. По определению, угловая скорость – это производная угла по времени:

    . (19)

    Направление вектора угловой скорости совпадает с направлением вектора углового перемещения (рис. 14). Вектор угловой скорости, так же, как и вектор углового перемещения, является аксиальным вектором.


    Размерность угловой скорости – рад/с.

    Вращение с постоянной угловой скоростью называется равномерным, при этом ω = φ/t.

    Равномерное вращение можно характеризовать периодом обращения Т, под которым понимают время, за которое тело делает один оборот, т. е. поворачивается на угол 2π. Поскольку промежутку времени Δt = Т соответствует угол поворота Δφ = 2π, то

    (20)

    Число оборотов в единицу времени ν, очевидно, равно:

    (21)

    Величина ν измеряется в герцах (Гц). Один герц – это один оборот в секунду, или 2π рад/с.

    Понятия периода обращения и числа оборотов в единицу времени можно сохранить и для неравномерного вращения, понимая под мгновенным значением T то время, за которое тело совершило бы один оборот, если бы оно вращалось равномерно с данным мгновенным значением угловой скорости, а под ν понимая то число оборотов, которое совершало бы тело за единицу времени при аналогичных условиях.

    Если угловая скорость меняется со временем, то вращение называется неравномерным. В этом случае вводят угловое ускорение аналогично тому, как для прямолинейного движения вводилось линейное ускорение. Угловое ускорение – это изменение угловой скорости за единицу времени, вычисляется как производная угловой скорости по времени или вторая производная углового смещения по времени:

    (22)

    Так же, как и угловая скорость, угловое ускорение является векторной величиной. Вектор углового ускорения – аксиальный вектор, в случае ускоренного вращения направлен в ту же сторону, что и вектор угловой скорости (рис. 14); в случае замедленного вращения вектор углового ускорения направлен противоположно вектору угловой скорости.

    При равнопеременном вращательном движении имеют место соотношения, аналогичные формулам (10) и (11), описывающим равнопеременное прямолинейное движение:

    ω = ω 0 ± εt,

    .

    Движение по окружности - простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

    Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

    ∆ l = R ∆ φ

    Если угол поворота мал, то ∆ l ≈ ∆ s .

    Проиллюстрируем сказанное:

    Угловая скорость

    При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

    Определение. Угловая скорость

    Угловая скорость в данной точке траектории - предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

    ω = ∆ φ ∆ t , ∆ t → 0 .

    Единица измерения угловой скорости - радиан в секунду (р а д с).

    Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

    При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

    При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

    a n = ∆ v → ∆ t , ∆ t → 0

    Модуль центростремительного ускорения можно вычислить по формуле:

    a n = v 2 R = ω 2 R

    Докажем эти соотношения.

    Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → - v A → .

    В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

    По определению ускорения:

    a → = ∆ v → ∆ t , ∆ t → 0

    Взглянем на рисунок:

    Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

    Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

    R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

    При ∆ φ → 0 , направление вектора ∆ v → = v B → - v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

    a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

    При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

    Запись центростремительного ускорения в векторной форме выглядит следующим образом:

    a n → = - ω 2 R → .

    Здесь R → - радиус вектор точки на окружности с началом в ее центре.

    В общем случае ускорение при движении по окружности состоит из двух компонент - нормальное, и тангенциальное.

    Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

    a τ = ∆ v τ ∆ t ; ∆ t → 0

    Здесь ∆ v τ = v 2 - v 1 - изменение модуля скорости за промежуток ∆ t

    Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

    Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

    Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

    Угловая скорость

    Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

    Период и частота

    Период вращенияT - это время, за которое тело совершает один оборот.

    Частота вращение - это количество оборотов за одну секунду.

    Частота и период взаимосвязаны соотношением

    Связь с угловой скоростью

    Линейная скорость

    Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


    Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

    Центростремительное ускорение

    При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

    Используя предыдущие формулы, можно вывести следующие соотношения


    Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

    Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

    Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

    Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

    Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

    Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

    Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

    Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

    Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

    За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

    Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

    Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

    \(~\upsilon = \frac{l}{\Delta t}.\)

    Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

    \(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

    В СИ единицей угловой скорости является радиан в секунду (рад/с).

    При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

    Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

    \(~\varphi = \varphi_0 + \omega t.\)

    Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

    \(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

    Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

    \(~T = \frac{\Delta t}{N},\)

    где N - число оборотов, совершенных телом за время Δt .

    За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

    \(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

    Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

    \(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

    Следовательно,

    \(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

    Литература

    Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.



    Поделиться