Урок «Квадратный трехчлен и его корни. Квадратный трехчлен и его корни

Учитель высшей категории: Минайченко Н.С., гимназия №24, г.Севастополь

Урок в 8 классе: «Квадратный трёхчлен и его корни»

Тип урока : урок новых знаний.

Цель урока:

    организовать деятельность учащихся по закреплению и развитию знаний о разложении квадратного трехчлена на линейные множители, сокращении дробей;

    развивать навыки в применении знаний всех способов разложения на множители: вынесение за скобки, с помощью формул сокращенного умножения и способа группировки с целью подготовки к успешной сдаче экзамена по алгебре;

    создать условия для развития познавательного интереса к предмету, формирования логического мышления и самоконтроля при использовании разложения на множители.

Оборудование: мультимедийный проектор, экран, презентация: «Корни квадратного трехчлена», кроссворд, тест, раздаточный материал.

Основные понятия . Разложение квадратного трёхчлена на множители.

Самостоятельная деятельность учащихся. Применение теоремы о разложении квадратного трёхчлена на множители при решении задач.

План урока

Решение задач.

Ответы на вопросы учащихся

IV. Первичная проверка усвоения знаний. Рефлексия

Сообщение учителя.

Сообщение учащихся

V. Домашнее задание

Запись на доске

Методический комментарий:

Эта тема является основополагающей в разделе «Тождественные преобразования алгебраических выражений». Поэтому важно, чтобы учащиеся автоматически умели не только видеть в примерах формулы разложения на множители, но и применять их в других заданиях: в таких как решение уравнений, преобразование выражений, доказательство тождеств.

В этой теме основное внимание уделяется разложению квадратного трёхчлена на множители:

ax + bx + c = a(x – x )(x – x ),

где x и x– корни квадратного уравнения ax + bx + c = 0.

Это позволяет расширить поле зрения учащегося, научить его мыслить в нестандартной ситуации, используя при этом изучаемый материал, т.е. используя формулу разложения квадратного трёхчлена на множители:

    умение сокращать алгебраические дроби;

    умение упрощать алгебраические выражения;

    умение решать уравнения;

    умение доказывать тождества.

Основное содержание урока:

а) 3x + 5x – 2;

б) –x + 16x – 15;

в) x – 12x + 24;

г) –5x + 6x – 1.

2. Сократите дробь:

3. Упростите выражение:

4. Решите уравнение:

б)

Ход урока:

I. Этап актуализации знаний.

Мотивация учебной деятельности.

а) из истории:

б) кроссворд:

Разминка-тренировка ума – кроссворд:

По горизонтали:

1) Корень второй степени называется…. (квадратный)

2) Значения переменной, при котором уравнение становится верным равенством (корни)

3) Равенство, содержащее неизвестное называется… (уравнение)

4) Индийский ученый , который изложил общее правило решения квадратных уравнений (Брахмагупта)

5) Коэффициенты квадратного уравнения - это… (числа)

6) Древнегреческий ученый, придумавший геометрический метод решения уравнений (Евклид)

7) Теорема, связывающая коэффициенты и корни квадратного уравнения (Виета)

8) «различающий», определяющий корни квадратного уравнения – это… (дискриминант)

Дополнительно:

    Если Д>0, сколько корней? (два)

    Если Д=0, сколько корней? (один)

    Если Д<0, сколько корней? (нет действительных корней)

По горизонтали и вертикали тема урока: «Квадратный трехчлен»

б) мотивация:

Эта тема является основополагающей в разделе «Тождественные преобразования алгебраических выражений». Поэтому важно, чтобы вы автоматически умели не только видеть в примерах формулы разложения на множители, но и применять их в других заданиях: таких как сокращение дробей, решение уравнений, преобразование выражений, доказательство тождеств.

Сегодня мы основное внимание уделим разложению квадратного трёхчлена на множители:

II. Изучение нового материала.

Тема: Квадратный трёхчлен и его корни.

Общая теория многочленов многих переменных далеко выходит за рамки школьного курса. Поэтому мы ограничимся изучением многочленов одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.



    Корнем многочлена называется значение переменной, при котором значение многочлена равно нулю. Значит, чтобы найти корни многочлена, надо приравнять его к нулю, т.е. решить уравнение.

Корень многочлена первой степени
легко найти
. Проверка:
.

Корни квадратного трехчлена можно найти, решив уравнение:
.

По формуле корней квадратного уравнения находим:

;

Теорема (о разложении квадратного трехчлена на множители ):

Если и -корни квадратного трехчлена
, где ≠ 0,

то .

Доказательство:

Выполним следующие преобразования квадратного трехчлена:

=
=
=

=
=
=

=
=

Так как дискриминант
, получим:

=
=

Применим в скобках формулу разности квадратов и получим:

=
=
,

так как
;
. Теорема доказана.

Полученная формула называется формулой разложения квадратного трехчлена на множители.

III. Формирование умений и навыков.

1. Разложите на множители квадратный трёхчлен:

а) 3x + 5x – 2;

Решение:

Ответ: 3x+5x–2=3(х+2)(х-)=(х+2)(3х-1)

На доске:

б) –5x + 6x – 1;

Дополнительно:

в) x – 12x + 24;

г) –x + 16x – 15.

2. Сократите дробь:

а)

4. Решите уравнение:

б)

IV. Первичная проверка усвоения знаний.

а) Тест.

Вариант 1.

1. Найти корни квадратного трехчлена: 2 -9х-5

Ответ:

2. Какой многочлен надо подставить вместо многоточия, чтобы было верным равенство:

б) Взаимопроверка по вариантам (ответы и параметры оценивания иллюстрируются).

в) Рефлексия.

V. Домашнее задание.


Тема «Квадратный трехчлен и его корни» изучается в курсе алгебры 9 класса. как и любой другой урок математики, урок по этой теме требует иособых средств и методов обучения. Необходима наглядность. К таковой можно отнести данный видеоурок, который разработан специально для того, чтобы облегчить труд учителя.

Данный урок длится 6:36 минут. За это время автор успевает раскрыть тему полностью. Учителю останется только подобрать задания по теме, чтобы закрепить материал.

Урок начинается с демонстрации примеров многочленов с одной переменной. Затем на экране появляется определение корня многочлена. Это определение подкрепляется примером, где необходимо найти корни многочлена. Решив уравнение, автор получает корни многочлена.

Далее следует замечание, что к квадратным трехчленам относятся и такие многочлены второй степени, у которых второй, третий или оба коэффициента, кроме старшего, равны нулю. Эта информация подкрепляется примером, где свободный коэффициент равен нулю.

Затем автор поясняет, как найти корни квадратного трехчлена. Для этого необходимо решить квадратное уравнение. И проверить это автор предлагает на примере, где дан квадратный трехчлен. Нужно найти его корни. Решение строится на основе решения квадратного уравнения, полученного из данного квадратного трехчлена. Решение расписано на экране подробно, четко и понятно. По ходу решения данного примера автор вспоминает, как решается квадратное уравнение, записывает формулы, и получает результат. На экране записывается ответ.

Нахождение корней квадратного трехчлена автор объяснил на основе примера. Когда обучающиеся поймут суть, то можно переходить к более общим моментам, что автор и делает. Поэтому он далее обобщает все вышесказанное. Общими словами на математическом языке автор записывает правило нахождения корней квадратного трехчлена.

Далее следует замечание, что в некоторых задачах удобнее квадратный трехчлен записывать немного иначе. На экране дается эта запись. То есть получается, что из квадратного трехчлена можно выделить квадрат двучлена. Такое преобразование предлагается рассмотреть на примере. Решение данного примера приводится на экране. Как и в прошлом примере, решение строится подробно со всеми необходимыми пояснениями. Затем автор рассматривает задачу, где используется только что выданная информация. Это геометрическая задача на доказательство. В решении присутствует иллюстрация в виде чертежа. Решение задачи расписано подробно и понятно.

На этом урок завершается. Но учитель может подобрать по способностям обучающихся задания, которые будут соответствовать данной теме.

Данный видеоурок можно использовать в качестве объяснения нового материала на уроках алгебры. Он отлично подойдет для самостоятельной подготовки обучающихся к уроку.

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Найти корень квадратного трехчлена можно через дискриминант. Кроме того, для приведенного многочлена второй степени действует теорема Виета, основанная на соотношении коэффициентов.

Инструкция

  • Квадратные уравнения – довольно обширная тема в школьной алгебре. Левая часть такого уравнения представляет собой многочлен второй степени вида А х² + B х + C, т.е. выражение из трех одночленов разной степени неизвестной х. Чтобы найти корень квадратного трехчлена, нужно вычислить такое значение х, при котором выполняется равенство этого выражения нулю.
  • Для решения квадратного уравнения нужно найти дискриминант. Его формула является следствием выделения полного квадрата многочлена и представляет собой определенное соотношение его коэффициентов:D = B² – 4 А C.
  • Дискриминант может принимать различные значения, в том числе быть отрицательным. И если младшие школьники могут с облегчением сказать, что корней у такого уравнения нет, то старшеклассники уже способны их определить, исходя из теории комплексных чисел. Итак, вариантов может быть три: Дискриминант – положительное число. Тогда корни уравнения равны: х1 = (-B + √D)/2 А; х2 = (-B - √D)/2 А;
    Дискриминант обратился в ноль. Теоретически в этом случае уравнение также имеет два корня, но практически они одинаковы: х1 = х2 = -B/2 А;
    Дискриминант меньше нуля. В расчет вводится некая величина i² = -1, которая позволяет записать комплексное решение: х1 = (-B + i √|D|)/2 А; х2 = (-B - i √|D|)/2 А.
  • Метод дискриминанта справедлив для любого квадратного уравнения, однако есть ситуации, когда целесообразно применить более быстрый способ, особенно при небольших целочисленных коэффициентах. Этот способ называется теоремой Виета и заключается в паре соотношений между коэффициентами в приведенном трехчлене:х² + P х + Q
    х1 + х2 = -P;
    х1 х2 = Q.Остается только подобрать корни.
  • Следует отметить, что уравнение может быть приведено к подобному виду. Для этого нужно разделить все слагаемые трехчлена на коэффициент при старшей степени А:А х² + B х + C |А
    х² + B/А х + C/А
    х1 + х2 = -B/А;
    х1 х2 = C/А.

Нахождение корней квадратного трехчлена

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2 – являются корнями уравнений?

а) 8х + 16 = 0; в) х 2 + 3х – 4 = 0;

б) 5х 2 – 5 = 0; г) х 3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е 1. Какие из чисел: –1; 1; ; 0 – являются корнями многочлена х 4 + 2х 2 – 3?

З а д а н и е 2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х 2 + 5х – 1; 6) х 2 – х – ;

2) 2х – ; 7) 3 – 4х + х 2 ;

3) 4х 2 + 2х + х 3 ; 8) х + 4х 2 ;

4) 3х 2 – ; 9) + 3х – 6;

5) 5х 2 – 3х ; 10) 7х 2 .

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е 3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х 2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х 2 – 8х + 3 = 0;

D 1 = 16 – 15 = 1;

D 1 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х 2 + 6х + 1 = 0;

D 1 = 9 – 9 = 0;

D 1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х 2 + 6х – 2 = 0;

7х 2 – 6х + 2 = 0;

D 1 = 9 – 14 = –5;

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax 2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а , поэтому второй корень данного квадратного трехчлена равен
.

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Что такое корень многочлена?

– Какой многочлен называют квадратным трехчленом?

– Как найти корни квадратного трехчлена?

– Что такое дискриминант квадратного трехчлена?

– Сколько корней может иметь квадратный трехчлен? От чего это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.



Поделиться