Теорема Штейнера — формулировка. Теорема Штейнера. Момент инерции

Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, что момент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С , проходящую через центр масс и параллельную ей ось О , отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и , связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

(2.10.1)

Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

, , , (2.11.1)

где — координаты центра масс тела, — проекции внешних сил на оси координат, m — масса тела. Три других являются уравнениями моментов относительно осей ОХ , ОУ и ОZ в декартовой системе координат:

, , , (2.11.2)

где L x , L y , L z — моменты импульса системы относительно осей ОХ , ОУ , ОZ , а M x , M y , M z — моменты внешних сил относительно этих же осей.

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.

Найдем связь между моментами инерции относительно двух различных параллельных осей. Она устанавливается теоремой Гюйгенса-Штейнера: момент инерции тела относительно произвольной оси равен сумме момента инерции этого тела относительно оси проходящей через центр масс, параллельно данной и произведения массы на квадрат расстояния между осями .

Докажем эту теорему. Пусть S сечение тела. Будем предполагать, что центр масс находится в точке О и оси, проходящие через точки О и А, перпендикулярны к рисунку. Мысленно разобьем тело на элементарные массы
. Момент инерции тела найдем, проинтегрировав по всем элементарным массам. Радиус-вектор элементарной массы
относительно оси А
, где - ее радиус-вектор относительно оси О, - радиус-вектор
, его модуль равен расстоянию между осями. Таким образом

. (5.11)

Умножая обе части равенства (5.11) на
и интегрируя по всему объему, получим:

Так как ось О проходит через центр масс, последний интеграл в (5.12) обращается в нуль.

.

Интеграл слева дает момент инерции относительно оси А, первый интеграл справа - момент инерции относительно оси О, второй интеграл справа дает полную массу тела. Откуда

. (5.13)

Это и есть аналитическое выражение теоремы Гюйгенса-Штейнера.

Примеры вычисления моментов инерции

1. Определим момент инерции тонкого однородного стержня длиною L и массой m относительно оси, проходящей через один из его концов. (см.рис.)

Направим ось Х вдоль стержня. Стержень будем считать тонким. Выделим элементарную массу
, имеющую длину
и расположенную на расстоянии Х от оси вращения. Причем, поскольку стержень однородный масса этого элемента

Проинтегрировав по всей длине стержня получим:

Момент инерции этого же стержня относительно оси, проходящей через центр масс определяется как:

2. Определим момент инерции однородного диска, расположенного

перпендикулярно оси вращения, проходящей через центр масс. Радиус диска R, масса – m. Используя симметрию задачи, разобьем диск на элементарные массы в виде тонких колец радиусом r и шириной
. (см.рис.)

Масса этого элемента
, где
- площадь поперечного сечения диска или поверхностная плотность диска,
- площадь кольца. Тогда
. Интегрируя в пределах от 0 доR, получим.

Момент инерции тела. Теорема Гюйгенса-Штейнера. Примеры вычисления моментов инерции тел

Момент инерции тела аддитивная величина, равная сумме моментов инерции всех частиц тела:

Здесь m i - масса i -той частицы, которую можно связать с плотностью вещества r i и объёмом частицы:

m i = r i DV i .

Тогда .

Если тело однородно, то есть его плотность повсюду одинакова, то r можно вынести за знак суммы:

Разделяя тело на всё более мелкие частицы, сведём задачу отыскания момента инерции к вычислению интеграла:

Интегрирование проводится по всему объёму тела V .

В качестве примера вычислим момент инерции тонкого однородного стержня относительно оси z , проходящей через его центр масс - точку С (рис. 9.3). Длина стержня - l , его масса - M .

На расстоянии x от оси вращения выделим элемент dx , масса которого dm = .


Рис. 9.3

Момент инерции этой частицы стержня равен:

.

Вычислив подобным образом, моменты инерции всех элементов стержня, сложим их, взяв интеграл:

Таким образом:

I z = . (9.7)

Интегрирование проведено по x в пределах от до .

Как изменится момент инерции этого стержня, если ось вращения перенести в другое место? Провести её, например, через край стержня?

В этом случае прежний интеграл нужно рассмотреть в пределах от 0 до l :

. (9.8)

Новое значение момента инерции того же стержня заметно возросло. Связано это с тем, что момент инерции тела определяется не только его массой, но и её распределением относительно оси вращения.

Вычислим момент инерции ещё одного тела: сплошного цилиндра относительно его геометрической оси.

Рис. 9.4

Пусть M - масса, а R - радиус цилиндра (рис. 9.4). Выделим в этом цилиндре цилиндрический слой радиусом r и толщиной dr . Масса этого слоя:

dm = r × dV = r × 2pr × dr × l ,

где: r - плотность материала цилиндра;

l - его длина.

Все частицы этого слоя находятся на одинаковом расстоянии от оси вращения - геометрической оси цилиндра, значит, момент инерции слоя равен:

dI = dm × r 2 = r × 2pr × dr × l × r 2 .

Для отыскания момента инерции цилиндра проинтегрируем последнее выражение:

.

Отметим, что pR 2 l = V - объём цилиндра, а rpR 2 l = rV = M - его масса.

Тогда момент инерции цилиндра относительно его геометрической оси можно окончательно записать в таком виде:

Момент инерции тела относительно произвольной оси (I) равен сумме момента инерции I c относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела М на квадрат расстояния между осями :



I = I c + Ma 2 , (9.9)

где а - расстояние между осями.

На рисунке 9.5 оси вращения перпендикулярны плоскости чертежа: через точку 0 проходит произвольная ось; параллельная ей ось проведена через центр масс тела - точку С . Расстояние между осями - а .

Выделим элемент тела массой Dm i . Его момент инерции относительно оси 0 равен:

Как следует из рисунка , откуда:

. (9.11)

Рис. 9.5

Теперь момент инерции частицы Dm i (9.10) можно представить такой суммой:

Для отыскания момента инерции всего тела, нужно сложить моменты инерции всех его частиц:

Здесь за знак суммы вынесена постоянная величина - расстояние между осями а . Первое слагаемое справа = Ма 2 , так как = М - масса тела. Второе слагаемое = I С - момент инерции тела, относительно оси, проходящей через центр масс. Третье слагаемое равно нулю, так как сумма равна произведению массы тела на вектор , проведённый от оси С к центру масс тела. Но ось С проходит через центр масс, поэтому = 0 и = М = 0.

Собрав эти результаты в уравнение (9.12), получим выражение теоремы Гюйгенса-Штейнера:

I O = I C + Ma 2 .

Эта теорема значительно упрощает задачу вычисления моментов инерции.

Известен, например, момент инерции стержня относительно оси, проходящей через его центр масс (9.7):

Воспользовавшись теоремой Гюйгенса-Штейнера, легко вычислим момент инерции этого же стержня относительно оси z ’, проходящей, например, через край стержня (рис. 9.3):

I z ’ = I z + Ma 2 , a = l /2.

.

Это значение момента инерции совпадает с результатом (9.8), который был получен методом прямого интегрирования.

Лекция 10 «Механика твёрдого тела»

План лекции:

1. Полная система уравнений, описывающая произвольное движение твердого тела. Условия его равновесия и покоя.

2. Энергия движущегося тела.

2.1. Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси

2.2. Кинетическая энергия тела при плоском движении.

3. Скатывание тела с наклонной плоскости.

В приведенных примерах оси проходят через центр инерции тела. Мо­мент инерции относительно других осей вращения определяется при по­мощи теоремы Штейнера: момент инерции тела относительно произвольной оси вращения равен сумме момента инерции Jc относительно параллельной оси, проходящей через центр инерции тела, и величины произведения массы тела на квадрат расстояния между ними. где m масса тела, а - расстояние от центра инерции тела до выбранной оси вращения, т.е.

, где m - масса тела, а - расстояние от центра

инерции тела до выбранной оси вращения.

Покажем на одном примере применение теоремы Штейнера. Вычислим момент инерции тонкого стержня относительно оси, проходящей через его край перпендикулярно стержню. Прямое вычисление сводится к тому же ин­тегралу (*),но взятому в других пределах:

Расстояние до оси, проходящей через центр масс, равно а = ℓ/2. По теореме Штейнера получаем тот же результат.

.

§22.Основной закон динамики вращательного движения.

Формулировка закона: Скорость изменения момента импульса относительно полюса равна главному моменту силы относительно того же полюса, т.е.

.

В проекциях на оси координат:
.

Если вращение тела происходит относительно неподвижной оси, то основной закон динамики вращательного движения примет вид: . В данном случае момент импульса легко выразить через угловую скорость и момент инерции тела относительно рассматриваемой оси:
. Тогда основной закон динамики вращательного движения примет вид:
. Если тело не рассыпается и не деформируется, то

, вследствие чего
. Если ко всему
, то
и, оно равно:
.

Элементарная работа, совершаемая моментом силы, при вращательном движении относительно неподвижной оси вычисляется по формуле:
(*). Полная работа
. Если
, то
.

На основании формулы (*), получим выражение для кинетической энергии вращательного движения твёрдого тела относительно неподвижной оси. Т.к.
, то. После интегрирования, получим окончательный результат для кинетической энергии вращательного движения относительно неподвижной оси
.

§23.Закон сохранения момента импульса.

Как уже указывалось, законы сохранения энергии и импульса связаны с однородностью времени и пространства, соответственно. Но у трехмер­ного пространства, в отличие от одномерного времени, имеется еще одна симметрия. Пространство само по себе изотропно, в нем нет выделен­ных направлений. С этой симметрией связанзакон сохранения момента импульса. Эта связь проявляется в том, что момент количества движе­ния, является одной из основных величин, описывающих вращательное движение.

По определению момент импульса отдельной частицы равен .

Направление вектора L определяется по правилу буравчика (штопора), а его величина равна L = r p sin , где

  угол между направлениями радиус-вектора частицы и ее импульса. Величина ℓ = r sin равна рас­стоянию от начала координатО до прямой, вдоль которой направлен импульс частицы. Эта величина называетсяплечом импульса. ВекторL зависит от выбора начала координат, поэтому говоря о нем, обычно указывают: "момент импульса относительно точкиО ".

Рассмотрим производную по времени от момента импульса:

.

Первое слагаемое равно нулю, т.к. . Во втором слагаемом, согласно второму закону Ньютона, производную по импульсу можно заменить на действующую на тело силу. Векторное произведение радиус-вектора на силу называетсямоментом силы относительно точкиО: .

Направление момента силы определяется тем же правилом буравчика. Его величина М = r F sin , где

     угол между радиус-вектором и силой. Аналогично тому, как это было сделано выше, определяется и плечо силы

= r sin - расстояние от точкиО до линии действия силы. В итоге получаем уравнение движения для момента импульса частицы:.

По форме уравнение аналогично второму закону Ньютона: вместо им­пульса частицы стоит момент импульса, а вместо силы -момент силы. Если
,то
, т.е. момент импульса постоянен в отсутствие внешних моментов сил.

Формулировка закона: Момент импульса замкнутой системы относительно полюса не изменяется с течением времени.

В частном случае вращения относительно неподвижной оси, имеем:
, где

начальные момент инерции и угловая скорость тела относительно рассматриваемой оси, а

конечные момент инерции и угловая скорость тела относительно рассматриваемой оси.

Закон сохранения полной механической энергии с учётом вращательного движения: полная механическая энергия консервативной системы постоянна: .

Пример: Найти скорость системы при прохождении расстояния h.

Дано: m, M, h. Найти: V - ?



Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, чтомомент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С , проходящую через центр масс и параллельную ей ось О , отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и , связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

(2.10.1)

\ 2.11. Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

, , , (2.11.1)

где - координаты центра масс тела, - проекции внешних сил на оси координат, m - масса тела. Три других являются уравнениями моментов относительно осей ОХ , ОУ и ОZ в декартовой системе координат:

, , , (2.11.2)

где L x , L y , L z - моменты импульса системы относительно осей ОХ , ОУ , ОZ , а M x , M y , M z - моменты внешних сил относительно этих же осей.

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.



Поделиться